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Introduction: colloidal quantum dots in photonics

LEDs

QD displays
Biological imaging

Infrared imaging

QD lasers

Started three 
decades ago

Single-photon 
sources

Samsung

Qdot website

courtesy of V. Klimov

JACS 1993

Guyot-Sionnest et al. 
Nat. Photonics 2019
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Merits of colloidal quantum dots

Solution-processability

Photoluminescence

Electrical conductivity

Quantum confinement

Absorption spectra of CdSe QDs

A field-effect transistor (FET) of QDs

h+e-

excitons
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Outline Surface chemistry of colloidal 
nanocrystalsSynthesis of complex heterostructures

Photonics of CdSe QDs and NPLs: 
ASE, lasing, and FRET
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Colloidal zinc-blende CdSe nanoplatelets
Cd(C13H27COO)2 + Se/ODE  CdSe + … 

Cd(CH3COO)2

240oC
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The next thickness of CdSe NPLs

W. Cho, S. Kim, I. Coropceanu, V. Srivastava, B. T. Diroll, A. Hazarika, 
I. Fedin, G. Galli, R. D. Schaller, D. V. Talapin; Chem. Mater. 2018

A less favorable reaction:
CdCl2 + “H2Se”  CdSe + 2HCl 
– favors nucleation on the side, and enables 
formation of thicker NPLs.

The standard reaction:
Cd(CH3COO)2 + “H2Se”  CdSe + 2CH3COOH 

Introduction of water or chloride into the 
synthesis yields 6 ML CdSe NPLs.
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CdSe nanorings and double rings
Perforation of NPLs upon treatment with Se in oleylamine

First example of quantum multi-rings
I. Fedin and D. V. Talapin; JACS 2016
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Zinc-blende crystal structure is preserved

o
A2.61.6 −=aMeasured

Scale bar: 5 nm
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Perforation in progress
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What is the mechanism of perforation?
Amine is necessary in the perforation
RCH2NH2 + 2Se → RC(Se)NH2 + H2Se

I. Fedin, D. V. Talapin; JACS 2016, 138 (31), 9771 – 9774

Oleylamine promotes elimination of Cd(OAc)2 as Z-type ligand:

[CdSe]4n[Cd(CH3COO)2]n(C18H35NH2)l [CdSe]4n[Cd(CH3COO)2]n-1(C18H35NH2)l-2 + Cd(CH3COO)2(C18H35NH2)2
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Potential applications: Aharonov-Bohm effect

InAs/GaAs

T 100m102Wb10068.2 21715
0 ≈⋅⋅== −−AB φ

A. Lorke et al. Phys. Rev. Lett. 2000

A. Govorov et al. Phys. Rev. B 2002

For our CdSe quantum rings: 

50 T to begin observing it
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Colloidal atomic layer deposition

A spectroscopically homogeneous ensemble 
of CdSe/CdS nanoplatelets

S. Ithurria and D. V. Talapin; JACS 2012
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Improvements to c-ALD
Swap the stationary and the mobile phases

A. Hazarika, I. Fedin, et al. JACS 2018, 141 (34), 13487 – 13496
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Complex heterostructures

We can produce structures of MBE level of complexity.

A. Hazarika, I. Fedin, et al. JACS 2018, 141 (34), 13487 – 13496
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Compositional grading in QDs

CdSe

CdxZn1-xSe ZnSe0.5S0.5 ZnS

3.0 nm 5.2 nm

13.8 nm

11.1 nm

18 nm

14.5 nm

20 nm

15 nm

CdSe

CdSe CdSe/CdxZn1-xSe CdSe/CdxZn1-xSe/ZnSe0.5S0.5

O. Kozlov, Y.-S. Park, J. Roh, I.Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675
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Compositionally graded CdSe/ZnS QDs
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CdSe/ZnS cg-QDs in toluene CdSe/CdxZn1-xSe/ZnSe0.5S0.5/ZnS

Type-I core-shell structure

O. Kozlov, Y.-S. Park, J. Roh, I.Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675
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Effect of strain on optical properties

A giant red shift in NPLs after the 
deposition of the first layer of CdS
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Ordinary QD core-shells Compositionally graded QDs

Isotropic (hydrostatic) strain εx,y < εz < 0
Asymmetric strain

Nanoplatelet core-shells

Biaxial strain

Strain splits light- and 
heavy-hole excitons.

A gradual red shift with 
a growth of CdS shell
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Outline Surface chemistry of colloidal 
nanocrystalsSynthesis of complex heterostructures

Photonics of CdSe QDs and NPLs: 
ASE, lasing, and FRET
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Need for a tool to probe the synthesis in situ
 monitor a ligand exchange or core-shell growth in situ
 promptly obtain the feedback from the system
 automate the process

Example from epitaxy: monitoring 
the deposition of GaAs with RHEED

Appl. Phys. A 1983, 31, 1 – 8.
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Potentiometry

I. Fedin, D. V. Talapin; JACS 2014, 136 (32), 11228

Ag | Ag2S

Ag | AgCryp+/ Cryp

−⋅−= 2S
0 log csVV

Measured signal: cell voltage

Potentiometric titrations

growth of a complete shell

Merits:
 fast response
 sharp equivalence point
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Thermodynamics of ligand adsorption
Langmuir adsorption:

• non-interacting ligands

( )cKL θ
θ
−

=
1

Frumkin-Fowler-Guggenheim isotherm:

• interacting ligands
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Kinetics of ligand adsorption

( )ncck
dt
dc

eq−⋅=−
97.0≈n

13s107.4 −−⋅≈k

The rate of decay of the concentration of S2-:

Linear fit:
slope ≈ 0.97
intercept ≈ –2.33

( )eqlogloglog ccnk
dt
dc

−⋅+=





− s 1502/1 ≈t when S2- is the limiting agent
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Potentiometry in a non-polar medium

[ ] [ ]ODE
2

distNMF
2 SS −− = K

Ag|AgCryp+

Ag|Ag2SNMF

CdSe NPLs + TMS2S

A similar span of electrode potentials 
as in a polar solvent

Take electrochemistry outside its comfort zone
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Controlled core-shell growth in a non-polar medium
w-CdSe QDs + [Me3Si]2S Growth of 3 MLs of CdS UV-Vis and PL spectra

w-CdSe QDs CdSe/CdS QDs
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Outline Surface chemistry of colloidal 
nanocrystalsSynthesis of complex heterostructures

Photonics of CdSe QDs and NPLs: 
ASE, lasing, and FRET
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Overview of photophysics in QDs and NPLs 

Auger recombination competes with stimulated emission.

2hν

hν

OR

hν

exciton biexciton

exciton ground state

stimulated emission

absorption

Transparency (A = 0)

OR

Auger recombination

2hν
hν

biexciton exciton

stimulated emission

Energy transfer
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Favorable conditions for energy transfer between NPLs

Spectral overlap

50 nm

Proximity of donor and acceptor 
NPLs in a hetero-stack

PL of the thinner NPLs aligns with the second 
exciton (lh–e) of the thicker NPLs.

TEM image of heterostacks of 4 ML and 5 ML 
CdSe NPLs.
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FRET from 4 ML to 5 ML CdSe NPLs

C. Rowland, I. Fedin, et al. Nature Mater. 2015, 14, 484 – 489

Accelerated donor decay Decelerated acceptor decay Differenced data

Time-resolved PL of a mix of 4 ML and 5 ML CdSe NPLs

τFRET = 10 ps
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Record-low threshold of ASE in CdSe/CdS NPLs

ASE occurs on the red shoulder of PL

XX + hν X + 2hν

hν 2hν

Absorbed energy = cross-section × fluence
Average # of excitons per NPL = 1.8
at the threshold

Biexcitonic process

ASE threshold:
Record-low value of 8 μJ/cm2

C. She,* I. Fedin,* D. S. Dolzhnikov, A. Demortière, R. D. Schaller, M. Pelton, 
D. V. Talapin; Nano Lett. 2014, 14 (5), 2772-2777 (*equal contribution)
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ASE outpaces Auger recombination

0
1 J

J
JE

+
=

σ
20 cm

J 800 µ=J

Saturation fluence is two orders of 
magnitude higher than ASE threshold.

PL dynamics of films of CdSe/CdS
NPLs by a streak camera

ASE outpaces Auger 
recombination.

ASE from a film of NPLs Measuring modal gain

Record-high modal gain 
of 600 cm-1
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Red, yellow, green, and blue laser action

Lasing at 570 nm – a wavelength gap in commercial lasers.

C. She, I. Fedin et al. ACS Nano 2015, 9 (10), 9475-9485

Lasing disappears when the cavity is 
destroyed by tilting. ASE persists.



Slide 33

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Lower ASE threshold with charging

Suppress Auger recombination through compositional grading.

Auger recombination 
in a negative trion

G. Cragg, A. Efros; Nano Lett. 2010

We expect that charging will lower lasing threshold, but how to handle Auger recombination?
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Record-high biexcitonic and trionic quantum yields

Dynamics of neutral excitons, 
negative trions, and biexcitons

PL dynamics of CdSe/ZnS cg-QDs 
at different excitation powers

Superior single-dot performance of cg-QDs
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Laser action of CdSe/ZnS cg-QDs
Photo-charging CdSe/ZnS QDs with Li superhydride

Laser action from neutral 
CdSe/ZnS cg-QDs 

Charging lowers lasing threshold in CdSe/ZnS 
QDs to sub-excitonic level.

O. Kozlov, Y.-S. Park, J. Roh, I.Fedin, T. Nakotte, Science 2019, 365 (6454), 672 - 675
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Illustration: surface chemistry in QD-sensitized PV

Surface chemistry and inter-ligand interactions determine the photoanode in QD-sensitized solar cells.

CuInS2 QDs in mesoporous TiO2 as the photoanode material in photovoltaics

QD loading determines the 
performance.

J. Du, R. Singh, I. Fedin, A. Fuhr, V. I. Klimov; Nat. Energy (final revision)
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Photopatterning

In-Ga-Zn oxide + PAG

CdSe/Na2Cd2Se3 + CdCl2 + PAG

Y. Wang, I.Fedin, H. Zhang, D. V. Talapin, Science 2017, 357 (6349), 385 – 388

Al2O3
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Summary
• Quantification of the total active surface area of NCs, and thermodynamics and 

kinetics of ligand adsorption with potentiometry

• Controlled growth of three shells of CdS over CdSe QDs in a non-polar solvent

• Effect of surface chemistry on dye-sensitized PV performance

• First example of colloidal double and triple rings, and discovery of the mechanism of 
perforation

• Fast energy transfer from CdSe 512 to CdSe 550 NPLs

• Low ASE threshold in CdSe/CdS NPLs of 8 μJ/cm2, and red, yellow, green, and blue 
lasing

• Sub-excitonic lasing in compositionally graded QDs

• Excellent performance of photo-patterned semiconductors, dielectrics, and metals
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